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Abstract

Previous research into the phase of transfer functions from beam and plate-type structures has shown
that the accumulated phase has different characteristics depending on whether the vibrational field is direct,
diffuse, or between these two extremes. In this paper, these accumulated phase characteristics are
numerically and experimentally investigated. Existing phase accumulation theories for direct and
reverberant vibrational fields are presented. Predictions of the accumulated phase are then compared to
measurements of the accumulated phase from the transfer mobilities of a number of beam and plate
structures. It is shown that selection of the correct FFT frequency resolution in the experiment is vital in
obtaining an accurate measurement of the phase of the transfer function. A criterion based upon the half-
power bandwidth of the analysis frequency band is proposed as a basis to select the correct FFT frequency
resolution. It is also shown that the location of the excitation may affect the measured value of the
accumulated phase. Experimental results also show that the accumulated phase in a vibrational wave field
between that of a direct field and a diffuse field is related to the source–receiver separation distance and to
the damping in the structure. It is shown that the resulting accumulated phase curve lies between the direct
field phase limit and the reverberant field phase limit.
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The transfer function between two points in a structure can be easily measured and is widely
used to analyse the dynamic characteristics of a system. Often the phase of the transfer function is
only inspected over a phase range from 0 to 2p radians. However, the accumulated or unwrapped
phase of a transfer function may also reveal useful information about the structure since different
types of wave fields will have different accumulated phase characteristics. For example, the phase
accumulation in a diffuse field is much greater than the phase accumulation in a direct field. This
phenomenon implies that the phase of a transfer function can be used to determine the level of
diffusivity of a vibrational wave field. In this paper, the phase of a transfer function in both a
direct field and a diffuse field will be investigated.
Research into the phase characteristics of transfer functions has received only limited attention

in the past. One notable exception is Lyon and his co-investigators who have made a significant
contribution in this area. In Refs. [1,2], the relationship between phase accumulation and the poles
and zeros of a transfer function was presented. Based upon this approach, it was shown that as the
frequency increases the accumulated phase will increase by p radians if passing a zero and
decrease by p radians if passing a pole. Further, for a finite, resonant, one-dimensional system the
phase accumulation was shown to vary about the spatial or propagation phase, �kr. For a two-
dimensional system the phase accumulation in a diffuse field was shown to vary about a trend line
given by half the number of poles of the system multiplied by p=2 radians. An experimental
investigation of this ‘reverberant phase limit’ for steel and perspex plates was reported by Mondot
and Petersson in Ref. [3]. Their measurements indicated that at high damping levels and high
frequencies the measured transfer function phase deviated from the reverberant phase limit. In
Ref. [4], the distribution of transfer function zeros in the complex frequency plane was studied by
Tohyama and Lyon. They categorised the zeros into two different types: minimum phase zeros
and non-minimum phase zeros. It was shown that non-minimum phase zeros have the same effect
upon phase accumulation as poles. In Ref. [5], the effect of truncation of impulse response data on
phase accumulation was studied. It was shown that the measured phase accumulation was
sensitive to the window length of the truncated impulse response function. It was recommended
that the exponential window should be used for the data processing in order to reduce the effect of
truncation on the phase accumulations. In Ref. [6], the distribution of non-minimum phase zeros
from transfer functions was studied and it was shown that the number of non-minimum phase
zeros was inversely proportional to the damping in the system. The phase accumulation in a
reverberant field was then predicted by using the group delay, which is the first derivative of the
phase over frequency, df/do. The phase accumulation from this model is related to both the
modal density and the damping of the system. Therefore, it is a function of the modal overlap of
the system. This result then was employed for the pulse waveform recovery in a reverberant
condition [7]. The phase variability in a reverberant field with high modal overlap was reported in
Ref. [8] where it was shown that variability of the phase from its predicted trend was due to the
random occurrence of poles and zeros. This phase variability was studied in terms of the group
delay. It was shown that the variance of the group delay was independent of frequency band and
that it decreases as the damping in the system increases. The group delay for a lightly damped
structural system excited by sound impingement was discussed in Ref. [9]. It was shown that in
this case the group delay is roughly twice that of the point force excitation case. In Ref. [10],
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Fletcher and Thwaites investigated the conditions under which direct field propagation phase
occurs in a reverberant environment based upon the poles and zeros approach through the study
of phase accumulations characteristics. It was shown that propagation phase can be observed in a
reverberant system provided the modal damping coefficient is very much greater than a ratio
formed between the propagation distance and the size of the structure under test. In Ref. [10]
Fletcher and Thwaites use the term ‘propagant phase’ in referring to the spatial or propagation
phase. For the remainder of this paper the term propagant phase is also employed.
In this paper, phase accumulation characteristics in the transfer functions of beams and plates

are investigated. In Section 2, the existing phase accumulation theories presented in Refs. [1–10]
are summarised. In Section 3, computer simulation results of the phase accumulation in the
transfer functions of beams and plates supporting purely direct or purely diffuse vibrational fields
are presented. In Section 4, experimental measurements of the accumulated phase are compared
to corresponding predictions of the direct field phase and reverberant field phase. The measured
results show the importance of the selection of correct FFT frequency resolutions for obtaining
accurate phase accumulation results. A criterion based upon the half-power bandwidth of the
analysis frequency bandwidth is suggested to select the FFT frequency resolution. Other potential
factors affecting the measured accumulated phase such as degenerate modes of the structure and
the location of the excitation are also discussed.
2. Theory of phase accumulation

The phase relationship, f(o), between source and receiver locations for simple ‘‘infinite’’ wave
propagation in a direct field is given by the propagant phase

fpðoÞ ¼ �kr, (1)

where k is the wavenumber and r is the distance between source and receiver locations. This
propagant phase relationship has been successfully used by Petersson and Mondot [11] to identify
wave conversion between flexural and longitudinal waves in a beam framework structure and also
by Pinnington and Brisco to identify bending wave speeds within a tyre [12].
However, Lyon noted in Ref. [1] that in many instances the measured phase accumulation

greatly exceed the propagant phase given by Eq. (1). Lyon attributed this effect to reverberant
wave behaviour of the structure. Hence, Lyon studied the polynomial modal expansion of a
transfer function and found that, as the frequency, o, increases, the accumulated phase will
undergo a phase change of þp if passing a zero and a phase change of �p if passing a pole. Thus,
if Np poles and Nz zeros have been passed up to a frequency o, the phase accumulation in the
transfer function of a reverberant environment, fr(o), will be approximately [1]

frðoÞ ¼ �ðNp �NzÞp� p=2, (2)

where the term p=2 arises from the possibility of a pole or zero near o ¼ 0. It can be seen from Eq.
(2) that the problem of estimating the phase accumulation, therefore, becomes a problem of
estimating the number of poles and zeros that occur within the frequency interval of interest. Since
the poles are the natural frequencies of the system, methods of mode count estimation [14] can be
used to estimate the number of poles, Np.
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Lyon [1,2] proposed that the number of zeros, Nz, can be estimated by considering the modal
expansion of the transfer function, H(o), between the source location, xs, and the response
location, xr. Thus,

HðoÞ ¼ const
X

m

CmðxsÞCmðxrÞ

o2 � o2
m

, (3)

where Cm(xs) and Cm(xr) are the mode shape functions of the structure and m is the mode count.
It is assumed that the mode shape functions are real. Lyon further assumed that the summation in
Eq. (3) could be replaced by considering two adjacent resonances, m and (m+1), plus a remainder
term, R. Thus,

HðoÞ � const
Am

o� ōþ �
þ

Amþ1

o� ō� �

� �
þ R, (4)

where ō ¼ ðom þ omþ1Þ=2, � ¼ ðomþ1 � omÞ=2 and the residues are given by Am ¼

CmðxsÞCmðxrÞ=2om and Amþ1 ¼ Cmþ1ðxsÞCmþ1ðxrÞ=2omþ1. Lyon suggests that if the residues
Am and Amþ1 have the same sign, a zero will exist between the two adjacent poles. The remainder
term does not affect the existence of a zero between the poles, but does slightly affect its location
on the complex plane. If the residues Am and Amþ1 have different signs, there will not be a zero
between the two adjacent poles.
Based upon the analysis of poles and zeros in the complex frequency plane, Lyon [1,2] found

that the phase accumulation in a transfer function for a finite one-dimensional system follows the
trend of the propagant phase, �kr. However, for a resonant, finite two-dimensional system, the
phase accumulation greatly exceeds the propagant phase. In Refs. [1,2] Lyon assumed that for a
finite two-dimensional system the number of zeros, Nz, will be approximately half the number of
poles, Np. Thus, from Eq. (2) the phase accumulation will be

frðoÞ ¼ �Npp=2, (5)

where for clarity of notation the additive term, �p=2, has been omitted. In Ref. [2] Lyon termed
fr(o) the reverberant phase limit and noted that the phase of a transfer function of a real two-
dimensional structure will typically lie between the propagant phase curve given by Eq. (1) and the
reverberant phase limit given by Eq. (5).
In Ref. [4] Tohyama and Lyon investigated the relationship between phase accumulation and

the occurrence of double-zeros in the transfer function, H(o). Double-zeros are either both
located on the pole line or occur as a pair of complex conjugate zeros located symmetrically with
respect to each other at equal distances from the pole line. If a conjugate zero is located below the
real frequency axis, it is called a non-minimum phase zero. It was shown in Ref. [4] that a non-
minimum phase zero has the same effect upon phase accumulation as that of a pole. Thus, the
accumulated phase will undergo a phase change of �p if passing a non-minimum phase zero
rather than a phase change of +p as in the case for other types of zeros.
In Refs. [6–8] Tohyama, Lyon and Koike proposed that the accumulated phase, fr(o), was due

to the number of ‘‘un-cancelled’’ poles plus the number of non-minimum phase zeros, Nþz , in the
transfer function, H(o). Since the number of ‘‘un-cancelled’’ poles was equal to the number of
non-minimum phase zeros and each non-minimum phase zero induces a phase change of �p
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radians the accumulated phase can be expressed as

frðoÞ ¼ �2pNþz . (6)

An example given in Ref. [6] showed the relationship of Eqs. (6)–(5). In the example a reverberant
field was considered. Therefore, it was deduced that the number of non-minimum phase zeros,
Nþz , was one quarter of the number of poles, Np. Substituting this quantity into Eq. (6) led to Eq.
(5). However, it was noted in Ref. [6] that Eq. (5) represented the total possible reverberant phase.
As damping in the system increased the number of non-minimum phase zeros decreased. Hence,
the reverberant phase limit, fr(o), also decreased. Because of phase variabilities due to the
random occurrence of poles and zeros in the transfer function, H(o), the reverberant phase limit,
fr(o), was also evaluated in terms of the group delay

tgðoÞ ¼
dfr

do
, (7)

which is the first derivative of the reverberant phase with respect to frequency. It was shown in
Ref. [6] that the group delay is given by

tgðoÞ ¼ �
p
2

nðoÞ 1�
2

p
tan�1

2

p
M

� �� �
, (8)

where tan�1 is the arctan function, n(o) is the modal density of the system and M(o) is the modal
overlap defined by

MðoÞ ¼
p
2
oZnðoÞ (9)

and Z is the damping loss factor. Thus, the modal overlap, M(o), is defined here in terms of energy
bandwidth, which is equal the half-power bandwidth multiplied by p/2. Eqs. (8) and (9) indicate
that as the damping loss factor, Z, increases the reverberant phase limit, fr(o), decreases. Thus,
because of the existence of damping in the system, Eqs. (6)–(8) should give a more accurate
estimation of the reverberant phase limit, fr(o), than Eq. (5).
In the following sections, where the equations are not stated explicitly, then Eq. (1) is referred to

as ‘‘the propagant phase’’, fp(o). The reverberant phase, fr(o), expressed by Eq. (2) is referred to
as ‘‘the accumulated phase’’. The reverberant phase, fr(o), expressed by Eq. (5) is referred to as
‘‘Lyon’s reverberant phase limit’’ and the reverberant phase, fr(o), expressed by Eqs. (7) and (8)
is referred to as ‘‘Tohyama’s reverberant phase limit’’.
3. Computer simulation study

To compare the phase accumulation in the transfer functions of a finite structure with the
propagant phase, �kr, of an equivalent ‘‘infinite’’ structure, computer simulations were
undertaken for a straight beam and for a flat plate undergoing flexural vibrations.
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Table 1

Dimensions and material properties of the experimental beam and the four experimental plates

Structure Young’s

modulus, E

(N/m2)

Density, r
(kg/m3)

Poisson’s

ratio, u
Loss

factor, Z
Length, l

(m)

Width, w

(m)

Thickness,

h (m)

Perspex plate 5.0� 109 1180 0.3 6.0� 10�2 0.6 0.6 0.006

Steel beam 210� 109 7870 0.3 5.0� 10�4 1.385 0.019 0.0095

Square steel plate 210� 109 7870 0.3 1.84� 10�4 0.6 0.6 0.0015

Rectangular steel

plate

210� 109 7870 0.3 4.11� 10�4 0.8 0.5 0.002

Rectangular steel

plate with added

damping

210� 109 7870 0.3 2.1� 10�2 0.8 0.5 0.002

L. Wang, S.J. Walsh / Journal of Sound and Vibration 290 (2006) 763–784768
3.1. One-dimensional wave field: the straight beam

The simulated beam’s dimensions and material properties are listed in Table 1 and were chosen
to be the same as the experimental straight beam described in Section 4. Eq. (2) is employed to
calculate the phase accumulation. The number of poles, Np, can be theoretically obtained for the
beam using the following equation [13], which assumes the beam is simply supported at both ends:

on ¼

ffiffiffiffiffiffiffi
EI

rA

s
ðnpÞ2

l2
, (10)

where E is Young’s modulus, I the second moment of area of the beam, r the density, A the cross
sectional area and l the length of the beam. The number of poles, Np, is obtained by counting the
number of natural frequencies, on, below a given frequency, o.
The number of zeros, Nz, is obtained using the pole-zero transfer function model, Eq. (4).

The product of the mode shape functions for mth mode of a simply supported beam is given by
Ref. [13] as

cmðxsÞcmðxrÞ ¼ sinðmpxs=lÞ sinðmpxr=lÞ, (11)

where xs and xr are the source and receiver positions, respectively. The number of zeros, Nz, up to
a given frequency, o, is developed by substituting Eq. (11) into Eq. (4) and considering the signs
of the numerators of the two adjacent pole terms, Am and Am+1. If the signs of numerators for the
successive pole terms are the same, there will be a zero between those two poles and the number of
zeros increases by one. Otherwise, it is assumed that there are no zeros between the interval
of these two poles. It is also assumed that the force is applied at a position 0.2m from one end
and that the distance from the source to the receiver location is r. Thus, xs ¼ 0:2m and
xr ¼ ð0:2þ rÞm.
Fig. 1 shows the numerical results of the phase accumulation in the transfer function of the

beam at different distances of r ¼ 0:65, 0.9 and 1.1m over the frequency range 0–3400Hz. The
solid lines in Fig. 1 show the phase accumulation results calculated by using Eq. (2) and the dotted
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Fig. 1. Phase accumulation against frequency in the transfer functions of a simple supported beam for three different

source–receiver separation distances, r: ————, predicted using Eq. (2); - - - -, propagant phases, �kr, for the three

separation distances, r.
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lines show the propagant phase,�kr, of an equivalent ‘‘infinite’’ beam. It can be seen in Fig. 1 that
the phase accumulations predicted using Eq. (2) for a finite beam undergo step changes of p or
multiples of p radians. This is because of the phase change due to the poles and zeros of the
transfer function. However, for each separation distance, r, the accumulated phase in the transfer
function of the finite beam follows the trend of corresponding propagant phase, �kr, of the
equivalent ‘‘infinite’’ structure.

3.2. A two-dimensional wave field: the flat plate

To investigate the validity of Lyon’s reverberant phase limit, frðoÞ ¼ �Npp=2, for a flat plate,
predictions of the accumulated phase were made using the pole-zero transfer function model,
Eq. (4), and compared to calculations of the reverberant phase limit, frðoÞ ¼ �Npp=2, for a flat
plate. The simulated plate’s dimensions and material properties were chosen to be the same as the
experimental rectangular steel plate listed in Table 1. The number of poles, Np, is theoretically
obtained for the plate by assuming a simply supported boundary condition [14]. Thus,

NpðoÞ ¼
oA

4pkcl

, (12)

where cl is the longitudinal wave speed in the material and k is the radius of gyration of the cross-
section of the plate. The reverberant phase limit, frðoÞ ¼ �Npp=2 is calculated using the number
of poles, Np, estimated from Eq. (12).
Eq. (2) is employed to calculate the accumulated phase, fr(o). The number of zeros, Nz, is

counted using the same method as that described for the simulated beam in Section 3.1. Thus, the
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appropriate mode shape function is substituted in the pole-zero transfer function model, Eq. (4),
and the sign of two adjacent pole terms considered to determine whether a zero exists. If so, the
zero count, Nz, is increased by one. For a simply supported plate, the mode shape function is
given by Ref. [14] as

cm1;m2
ðX sÞcm1;m2

ðX rÞ ¼ sinðm1pxs=lÞ sinðm2pys=wÞ sinðm1pxr=lÞ sinðm2pyr=wÞ. (13)

The plate is assumed to be excited at coordinate location Xs(xs, ys) ¼ (0.03, 0.07m), and the
response, Xr(xr,yr), is assumed to be located at a distance r from the source.
Fig. 2 shows predicted results for the phase accumulation, fr(o), against frequency in the

transfer functions predicted at three different response locations: response location 1 with
coordinates Xr(xr, yr) ¼ (0.18, 0.32m), thus, the source–receiver separation distance, r, is 0.310m;
response location 2 with coordinates Xr(xr, yr) ¼ (0.16, 0.2m), thus, the source–receiver
separation distance, r, is 0.184 m; and response location 3 with coordinates Xr(xr, yr) ¼ (0.48,
0.27m), thus, the source–receiver separation distance, r, is 0.492m. The thin solid lines show the
accumulated phase, fr(o), calculated using Eq. (2) for the three different separation distances, r.
A prediction of the reverberant phase limit, frðoÞ ¼ �Npp=2, is shown as a thick solid line.
Predictions of the propagant phase, �kr, for the three different separation distances, r, are shown
with dashed lines. It can be seen in Fig. 2 that the accumulated phase curves, fr(o), calculated
using Eq. (2), fluctuate with frequency because of the change of phase due to poles and zeros in
the respective transfer functions, H(o). However, all three curves follow the trend of the
reverberant phase limit, frðoÞ ¼ �Npp=2. Since the reverberant phase limit, frðoÞ ¼ �Npp=2 is
calculated from the number of poles of the plate, it will be independent of the source–receiver
separation distance, r. It can also be seen in Fig. 2 that all three accumulated phase curves, fr(o),



ARTICLE IN PRESS

L. Wang, S.J. Walsh / Journal of Sound and Vibration 290 (2006) 763–784 771
calculated for the finite plate are significantly greater than the corresponding propagant phase
curves, �kr, of the equivalent ‘‘infinite’’ plate.
To illustrate the effect of damping, predictions of the reverberant phase limit for the rectangular

steel plate were also made using Tohyama’s reverberant phase model, Eq. (8). The damping of the
structure, Z, is assumed constant over the frequency range of interest, 0–3200Hz. Three different
damping conditions are assumed, with loss factors, Z, of 4� 10�4, 4� 10�3 and 0.01. The
source–receiver separation distance, r, was assumed to be 8.5 cm. To estimate the reverberant
phase limit, the group delay, tg(o), was calculated using Eq. (8) and integrated with respect to
frequency, o, as shown in Eq. (7) to give the reverberant phase limit, frðoÞ. The modal density of
the plate, n(o), was calculated by differentiating with respect to frequency the number of poles,
Np, given by Eq. (12). Thus,

nðoÞ ¼
A

4pkc1
. (14)

Fig. 3 shows the phase accumulations against frequency predicted using Tohyama’s reverberant
phase model, Eq. (8), for the three different damping conditions. The reverberant phase limit,
frðoÞ ¼ �Npp=2, and the propagant phase, �kr, are also shown. It can be seen in Fig. 3 that as
the damping in the plate increases, predictions of the phase from Tohyama’s reverberant phase
model accumulate less than that predicted by the reverberant phase limit, frðoÞ ¼ �Npp=2. When
the damping is light, for example when Z is 4� 10�4, the phase accumulations from both models
are similar. As the damping increases, for example when Z is 4� 10�3, the phase accumulation
predicted using Tohyama’s reverberant phase model is less than the reverberant phase limit,
frðoÞ ¼ �Npp=2. When the damping is considerable, for example when Z is 0.01, the phase
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Fig. 3. Phase accumulation against frequency in the transfer functions of a simply supported steel plate with a

source–receiver separation distance, r, of 8.5 cm: - - - -, predicted using Tohyama’s reverberant phase model, Eq. (8), for

three different damping conditions; ———, reverberant phase limit. �(p/2)*Np, ———— propagant phase, �kr.
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accumulation predicted using the Toyama’s model is considerably less than the reverberant phase
limit, frðoÞ ¼ �Npp=2. It was noted by Tohyama, Lyon and Koike in Ref. [6] that this can be
explained in terms of non-minimum phase zeros in the transfer function of the structure. Since, as
the damping increases the number of non-minimum phase zeros, Nþz , decreases and, hence, the
phase accumulation, fr(o), will be become less.
4. Experimental study

4.1. One-dimensional wave field: the straight beam

In the computer simulation presented in Section 3, it was shown that the phase accumulation in
the transfer function of a straight beam undergoing flexural vibrations follows the trend of the
propagant phase, �kr. To verify this prediction, the phase accumulation in the transfer functions
of an experimental free–free steel beam was measured using the apparatus shown schematically in
Fig. 4. The rectangular steel beam was suspended by elastic ropes from a rigid frame and the beam
was excited using random excitation from an electro-dynamic exciter located at one end of the
beam. The applied force was measured with a force transducer at the excitation location and the
response was measured with an accelerometer, which was moved to different locations along the
beam. The data acquisition and processing was carried out using an FFT analyzer, which
calculated the required transfer functions. The material properties and physical dimensions of the
beam are given in Table 1. The damping loss factor of the beam, Z, was measured using the decay
rate method [15] for the frequency range 15–3215Hz. Of course, transfer function phase can only
be determined within a phase range from 0 to 2p radians. However, the measured transfer
function phases were converted to continuous functions of frequency using the MATLAB
‘unwrap’ command. When using this command, if an absolute phase jump of greater than p
radians is encountered then the phase value is changed to its 2p complement [16]. Ideally, a further
check to ensure that the derivative is the same before and after the discontinuity should also be
performed. However, this is not implemented within the ‘unwrap’ command and was not
performed for this analysis. Thus, using the ‘unwrap’ command an accumulated phase function
was formed corresponding to each of the measured transfer functions.
Charge
amplifier

Charge
amplifier

FFT
analyser

Random
noise
generator

Power
amplifier

Electro-
dynamic
exciter

Force
transducer

Accelerometer
Test beam

Fig. 4. Apparatus used to measure the transfer functions of the experimental steel beam.
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Fig. 5 shows the phase accumulation against frequency in the transfer functions of the beam
measured at source–receiver separation distances, r, of 65 and 110 cm. The measurement
frequency range was from 15 to 3215Hz. The solid lines shown in Fig. 5 display the measured
phase accumulations and the dotted lines show the corresponding theoretical predictions of
the propagant phase, �kr. It can be seen in Fig. 5 that the measured phase curves fluctuate in
steps of p radians because of the phase change due to the resonances and anti-resonances of
the structure. It can also be seen in Fig. 5 that the measured phase accumulations follow the
trends of the corresponding propagant phases, �kr. However, it is apparent in Fig. 5 that
the measured phase accumulation may deviate from the propagant phase curve, �kr, for
significant frequency ranges. This occurs over the frequency range 1300–2400Hz for the
accumulated phase measured at the source–receiver separation distance, r, of 65 cm. This
discrepancy is due to the difference between the resonant and anti-resonant nature of the
measured transfer function compared to the smooth behaviour of the propagant phase, �kr, of
the equivalent infinite structure. For example, an anti-resonance at approximately 1300Hz
in the measured transfer function has induced a phase change of +p radians in the measured
phase moving it away from the propagant phase trend, �kr. This phase difference continues until
a resonance is encountered at approximately 1800Hz, which induces a phase change of �p
radians. Two further resonances at approximately 2250Hz and 2400Hz each induce a phase
change of �p radians moving the measured phase accumulation closer to the trend predicted by
the propagant phase, �kr. At low frequencies, below approximately 80Hz, the measured phase
accumulations are corrupted by noise due to transducer limitations and, hence, the phase has not
been accurately recorded.
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4.2. A two-dimensional wave field: the flat plate

In an ideal direct vibrational field, all of the waves travel away from the source. To obtain an
experimental direct field, a perspex plate, with a relatively high damping loss factor, Z, of 6� 10�2,
was supported in a wooden sandbox to create ‘‘infinite’’ wave propagation as illustrated
schematically in Fig. 6. The sandbox consisted of a square outer section of area 0.62� 0.62m and
a square inner section of area 0.28� 0.28m. The perspex plate rested on a wooden inner section
and sand was added both above and below the plate lying between the inner and outer sections of
the box. The material properties and physical dimensions of the perspex plate are given in Table 1.
For the sand to be an effective damping treatment, a minimum of at least one-half of a wavelength
of a bending wave should be within the sand. For this apparatus, 160mm from the plate edge lay
within the sand. Thus, ‘‘infinite’’ conditions are to be expected for bending waves above 210Hz.
An illustration of the effectiveness of the anechoic termination is shown in Fig. 7 which displays
on logarithmic axes the modulus of the point mobility of the perspex plate when excited by a force
applied at its centre. The dotted horizontal line shown in Fig. 7 is the theoretical value of the
modulus of the point mobility of the equivalent infinite plate [14]. As expected, the equivalent
infinite mobility lies between the peaks and troughs of the measured point mobility. It can also be
seen in Fig. 7 that above approximately 300Hz the peaks and troughs of the measured data lie
close to the value of the equivalent infinite plate. Thus, indicating effective anechoic termination
of the bending waves above this frequency.
A schematic representation of the measurement equipment is shown in Fig. 8. The plate was

excited by striking the centre location with an instrumented hammer which measured the applied
force. The response was measured with a lightweight accelerometer at different locations on the
plate. Data were collected and processed using an FFT analyzer, which calculated the necessary
transfer functions.
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Fig. 9 shows the phase accumulation from three transfer mobilities of the plate measured over a
frequency range of 0–6400Hz. The three lighter curves show the accumulated phase measured at
the same distance of 14.1 cm but in three different directions. The theoretical value of the
propagant phase, �kr, is shown as a bold line. It can be seen in Fig. 9 that the measured data
follow the trend of the propagant phase, �kr.
To verify the phase accumulation predictions for a diffuse vibrational field the transfer

functions of two finite plates were measured using the experimental apparatus shown
schematically in Fig. 10. A square steel plate and a rectangular steel plate were suspended in
turn using elastic ropes from a rigid frame giving free–free boundary conditions as illustrated
in Fig. 10. The material properties and physical dimensions of the two test plates are given
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in Table 1. The damping loss factor of the two plates, Z, was measured using the decay rate
method [15]. Steel has relatively low structural damping compared to perspex and so waves
reflected by the boundaries of the plates can be expected to generate a diffuse vibrational field. It is
worth noting that there is also likely to be some loss of energy in the structure due to radiation
damping. Each plate was excited using random excitation applied from an electro-dynamic
exciter. The force was measured with a force transducer and applied at the centre of the plate or at
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an off-centre location. The response acceleration was measured with a lightweight accelerometer
at a number of different distances from the source location. Frequency response function
measurements were carried out using an FFT frequency analyser.
Fig. 11 shows the measured phase accumulation in the transfer mobilities of the square plate

plotted over a frequency range of 0–6400Hz. The excitation is applied at the centre of the plate
and the response is measured at distances of 2, 4, 6, 8, 10, 12 and 14 cm from the exciter. For these
measurements an FFT frequency resolution of 2Hz/Point was used. The direct field propagant
phase, �kr, for a source–receiver separation distance of 2 cm is also shown. On this y-axis scale
the propagant phase, �kr, appears to be zero. However, when the scale is expanded, the
propagant phase, �kr, is, as expected for the bending waves, proportional to the square root of
frequency, f 1=2. The reverberant phase limit, frðoÞ ¼ �Npp=2 is shown in Fig. 11 as a straight line
extending over the y-axis range from 0 to �250p radians. It can be seen in Fig. 11 that all of the
measured phase curves lie between the direct field propagant phase, �kr, and the reverberant
phase limit, frðoÞ ¼ �Npp=2. It can also be seen in Fig. 11 that the gradient of the measured
phase curves are approximately constant, but less than the slope of the reverberant phase limit,
frðoÞ ¼ �Npp=2. It can also be seen that the measured phase accumulations lie close to one
another except for the phase accumulation measured at the source–receiver separation distance, r,
of 2 cm.
The fact that the experimental phase curves measured at source–receiver separation distances

beyond 2 cm are all close to each other indicates that the accumulated phases have reached a
certain limit with respect to the separation distance. However, this limit is much less than the
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reverberant phase limit, frðoÞ ¼ �Npp=2. This is not expected as the steel plate contains light
damping, hence, the phase accumulation curves should lie close to the reverberant phase limit,
frðoÞ ¼ �Npp=2. This characteristic of the accumulated phase is apparent in other studies on the
accumulated phase in plates, for example in Ref. [10]. One explanation for the discrepancy, not
noted in previous studies, is the fidelity of the FFT frequency resolution. Fig. 12 shows the
influence of different FFT frequency resolutions on the phase accumulation in three transfer
functions measured on the steel plate. The excitation was applied at the centre of the plate and the
response was measured at the same location 8.5 cm from the source. The three transfer functions
were measured using FFT frequency resolutions of 0.5, 1 and 2Hz/Point. The accumulated phases
of the three transfer functions are shown in Fig. 12 along with the reverberant phase limit,
frðoÞ ¼ �Npp=2, and the propagant phase, �kr. It can be seen in Fig. 12 that as the FFT
frequency resolution becomes finer the measured phase accumulation increases towards the
reverberant phase limit, frðoÞ ¼ �Npp=2. This indicates that selection of the correct FFT
frequency resolution is vital if accurate measurements of the accumulated phase are to be
obtained.
To establish the required frequency resolution consider the case of a lightly damped structure

whose frequency response function has been measured using a relatively coarse FFT frequency
resolution. The two FFT phase values just before and just after a resonant frequency show a
phase change of p radians. However, the phase tracking algorithm cannot detect whether this is a
phase change of +p radians and, hence, due to a zero or a phase change of –p radians and, hence,
due to a pole. What is required is an additional phase value between the phase jump of p radians
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that will establish the positive or negative direction of the phase change. Since the phase change of
p radians can be expected to occur approximately over the half-power bandwidth, df, of the
resonance, three FFT data points will be required within the half-power bandwidth, df. Thus, the
proposed criterion for accurate measurement of the phase accumulation is that the FFT frequency
resolution Df, should be less than one half of the half-power bandwidth, df. Hence,

Dfo1
2
df . (15)

The half-power bandwidth, df, can be expressed as [15]

df ¼ f Z, (16)

where f is the resonant frequency of the mode. Thus, assuming the loss factor, Z, is constant, it can
be seen from Eqs. (15) and (16) that a finer FFT frequency resolution, Df , is needed at low
frequencies, however, the resolution can be coarser at higher frequencies.
To illustrate the proposed FFT frequency resolution criterion, two transfer functions were

measured both with FFT frequency resolutions better than the proposed resolution. For example,
the rectangular steel plate with added damping treatment has a damping loss factor, Z, measured
using the decay rate method [15] for the frequency band from 50 to 3250Hz, of 2.1� 10�2. Thus,
above 200Hz, an FFT frequency resolution of 1.05Hz/Point is required to obtain accurate
measurement of the accumulated phase. Fig. 13 shows a comparison of the phase accumulation
curves in the transfer function of the damped rectangular plate measured using FFT frequency
resolutions of 0.25 and 1.0Hz/Point, respectively. Thus, both frequency resolutions are finer than
the proposed maximum FFT frequency resolution of 1.05Hz/Point. The source is located at a
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non-centre position and the two responses are measured at the same location, 8.5 cm from the
source. It can be seen in Fig. 13 that the measured phase accumulation curves are
indistinguishable. This indicates that an FFT frequency resolution, Df , of 1.0Hz/Point is fine
enough to ensure an accurate measurement of the accumulated phase in this case.
Another possible reason for the difference between the measured phase accumulation shown in

Fig. 12 and that predicted by the reverberant phase limit, frðoÞ ¼ �Npp=2, is because of the
existence of degenerate modes of the square plate. For a square or rectangular plate there may be
different mode shapes having the same natural frequency. This degeneracy is particularly
pronounced for square plates [14]. When performing a phase accumulation the measured phase
will change by p radians at each resonant frequency. However, if the resonance frequency
corresponds to a degenerate mode then to correspond to the mode count of the reverberant phase
limit, frðoÞ ¼ �Npp=2, the accumulated phase should change by a multiple of p radians. Since
this is not the case, the measured accumulated phase will be an underestimate of the predicted
accumulated phase.
A further reason for the difference between the measured phase accumulation shown in Fig. 12

and that predicted by the reverberant phase limit, frðoÞ ¼ �Npp=2, is because the excitation was
applied at the centre of the plate, and, hence, located on a nodal line. Thus, any mode shape with
a nodal line at the centre of the plate will not be excited and, hence, will not be measured in the
accumulated phase.
The effect of degeneracy and nodal line excitation upon the number of modes that can be

counted in the amplitude spectra of a point excited rectangular plate has previously been
illustrated in Ref. [14]. Hence, to minimise the effect of degenerate modes of the plate upon the
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phase accumulation the square plate was replaced by a rectangular steel plate. Further, to
minimise the effect of exciting the plate on a nodal line the source was relocated from the centre of
the plate to an off-centre position. To ensure a sufficiently fine FFT frequency resolution, a
resolution of 0.25Hz/Point was used. The material properties and physical dimensions of the
rectangular steel plate used for the experiment are listed in Table 1.
Fig. 14 shows the influence of different source locations upon measured phase accumulations.

The two thin lines in Fig. 14 show the measured phase accumulation for two transfer functions,
one with the force applied at the centre of the plate and the other for the force applied at an off-
centre location, but with the separation distance, r, between the source and the receiver remaining
the same at 8.5 cm. The reverberant phase limit, frðoÞ ¼ �Npp=2, and the propagant phase, �kr,
are also shown. It can be seen in Fig. 14 that phase accumulation corresponding to the off-centre
excitation lies closer to the reverberant phase limit, frðoÞ ¼ �Npp=2, than the phase
accumulation in the transfer function measured with central excitation. This indicates that an
off-centre force excites more modes and, hence, produces greater phase accumulation. However,
the effect of degeneracy is less clear. For example, the phase difference between the 0.5Hz/Point
phase accumulation curve and the reverberant phase limit , frðoÞ ¼ �Npp=2, for the square plate
data shown in Fig. 12, is approximately 15p radians at 1600Hz. This is approximately the same as
the phase difference between the centre excitation phase accumulation curve and the reverberant
phase limit , frðoÞ ¼ �Npp=2, for the rectangular plate data at 1600Hz shown in Fig. 14. Thus, it
indicates that degeneracy may not be a significant phenomenon.
To illustrate the effect of source–receiver separation distance upon phase accumulation, phase

accumulation curves were measured at four different separation distances, r, of 5.7, 8.5, 11.3 and
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17.0 cm on the undamped rectangular steel plate. The source was located at a non-centre
position and the FFT frequency resolution of the data was 0.125Hz/Point below 800Hz and
0.25Hz/Point above this frequency. It can be seen in Fig. 15 that three of the measured
accumulated phase curves lie close to the reverberant phase limit, �ðp=2ÞNp. The exception
is the phase accumulation measured at the separation distance, r, of 5.7 cm, which suggests that
the accumulated phase curves will reach the reverberant phase limit, �ðp=2ÞNp, at a
source–receiver separation distance between 5.7 and 8.5 cm. It can also be seen in Fig. 15 that
the phase accumulation curves measured at 8.5, 11.3 and 17.0 cm vary about Lyon’s reverberant
phase limit, �ðp=2ÞNp. One possible explanation for this variability is that only one transfer
function measurement was made for each source–receiver separation distance, r. Therefore,
the measured transfer function will be dependant upon the source location, as noted previously,
and also upon the exact response location. In principle, a better estimate of the accumulated
phase will be obtained by forming a spatial average from a number of transfer functions
measurements made at the same source–receiver separation distance, r, but at different locations
over the plate.
To study the effect of source–receiver separation distance upon phase accumulation

characteristics under relatively high damping conditions, additive damping treatment was
attached to one face of the rectangular steel plate. Due to the damping treatment, the plate loss
factor increased significantly from 4.11� 10�4 to 2.1� 10�2 for the frequency analysis band
50–3250Hz. Measurements were made of the accumulated phase at separation distances, r, of 8.5,
17.0, 25.5, 34.0, 42.5 and 48.1 cm. The source was at a non-centre position and the FFT frequency
resolution of the measured data was 1Hz/Point. Fig. 16 shows the measured phase accumulation
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curves together with the reverberant phase limit, �ðp=2ÞNp, and the theoretical curve predicted
using Tohyama’s reverberant phase model, Eq. (8), which includes the effect of damping. The
phase accumulation curves measured at source–receiver separation distances, r, of 42.5 and
48.1 cm lie close to the phase accumulation curve predicted by Tohyama’s reverberant phase
model, Eq. (8). It can be seen in Fig. 16 that all of the measured phase accumulation curves are
less than predicted by Lyon’s reverberant phase limit, �ðp=2ÞNp. It can also been seen in Fig. 16
that the phase accumulation curves for separation distances less than 42.5 cm are less than the
accumulated phase predicted by Tohyama’s reverberant phase model. However, as the
source–receiver separation distance increases, the accumulated phase curves approach Tohyama’s
reverberant phase model. This indicates that Lyon’s reverberant phase limit, �ðp=2ÞNp, is only
suitable for lightly damped structures and that Tohyama’s reverberant phase model is more
appropriate when predicting the phase accumulation under relatively high damping conditions.
Fig. 16 also indicates that up to a certain source–receiver separation distance the phase
accumulation is related to the separation distance and that beyond that critical distance
the accumulated phase can be predicted accurately using Tohyama’s reverberant phase model,
Eq. (8).
5. Summary

For a finite one-dimensional structure, such as a beam, it has been shown that the transfer
function phase, f(o), fluctuates around the propagant phase, �kr. For a two-dimensional
structure supporting a direct vibrational field such as an ‘‘infinite’’ plate it was shown that the
measured transfer function phase also follows the trend predicted by propagant phase, �kr. By
contrast, for a diffuse vibrational field, such as that in a lightly damped finite plate, the measured
transfer function phase follows the reverberant phase limit, �ðp=2ÞNp, proposed by Lyon. It has
also been shown that for a vibrational wave field containing both a direct field and a reverberant
field, such as that in a heavily damped plate, the measured transfer function phase lies between the
propagant phase, �kr, and Tohyama’s reverberant phase limit given by Eq. (8). As the separation
distance, r, between the source and the receiver locations increases, the measured transfer function
phase also increases until it reaches Tohyama’s reverberant phase limit. Beyond this separation
distance, the measured transfer function phase will not show any increase with increasing
separation distance.
This study has also illustrated two other factors, which can affect the measured transfer

function phase accumulation: (i) source location; and (ii) FFT frequency resolution. The
source position has an influence on the measured phase accumulation in that an off-centre
source location will produce more phase accumulation than a central source location.
This is because the excitation is now away from the central nodal lines and, hence, more
modes are excited giving greater phase accumulation. Of particular importance in the
accurate measurement of transfer function phase is the selection of the appropriate FFT
frequency resolution. It has been shown that the FFT frequency resolution should be less
than half of the half-power bandwidth of the analysis band. Otherwise the positive or
negative direction of a p radian phase jump due to a zero or a pole, respectively, may not be
determined.
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